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necessary that the group be transformable to an Abelian group. On the other hand, every 
group can be transformed by a change of variables to a group similar to it p], and, by 
a suitable choice of base vectors, the similar groups will have like structure constants. 
According to the above-cited corollary there exists a change of coordinate systems trans- 

forming the first coordinate to an ignorable coordinate, but here the second coordinate 
becomes a latent ignorable coordinate. 
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The.oscillations of conservative systems with two degrees of freedom under int- 

ernal resonance were examined in [l - 6-j. We investigate the resonance oscill- 

ations of one mechanical system and ascertain the features of its behavior. 

1, Consider the system shown in Fig.1. It consists of a disk attached to a thin elastic 
spindle having a coefficient of elasticity c. A compound pendulum rotates around an axis 

on belonging to the disk and perpendicular to the disk’s axis 
of rotation (in the Figure this axis is perpendicular to the plane 
of the diagram). We take it that 5, r~‘, 5 are the principal iner- 
tial axes and that the compound pendulum has the principal mo- 

ments of inertia It, I,, Ic with respect to them. I is the 
disk’s moment of inertia with respect to the axis of rotation. We 
denote the pendulum’s center of gravity by C ; the distance 
OC = e, (pl is the disk’s angle of rotation from the equilibrium 

position, ‘pz is the pendulum’s angle of deviation from the vertical, 
n is the mass of the pendulum. In this notation we have: 

for the system’s kinetic energy, 

Fig. 1. 
5 

T = I/% (I + I4 sin? cp~ + I, cos’? (~2) ‘pl‘? f I/J I,,(PJ’~ (1.1) 

for the system’s potential energy, 
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II = V,ccp,2 - mgesincp, 

Taking (1.1) and (1.2) into account, we find the equations of motion 

Iqr” + (IL sin? ‘pa + IL co9 (pd) ‘pt” + (IL - Zc) sin 2~1cpr’cp~’ + ccpi = 0 

I#” - ‘/a (It - IL) sin 2q?(p1’2 + mge sin 9~ = 0 

We set 

Tl = E”“Zl, (PJ = e”ZZa (a is a small parameter) 

After some manipulations, from (1.3) we obtain 

Zl# + B”z1 = - &a (Zl”Z22 + 22121’2A’) + &%z (4/2 222zfz2' + l/gz24z1") + . 

~2" + 22 = e (bzl'"z2 + '/CZAR) - E‘? (“/zb@zAz+ 1/120zz5) + . . . 
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(1.2) 

(1.3) 

(1.G) 

(1.5) 

(1.6) 

The primes denote the derivatives with respect to a dimensionless time. 

2. We seek the solution of system (1. S), using one supplement to the existing asym- 
ptotic methods fl]. Let us find the solution in the form 

zi = Acos@r - (p) -j- EZli + E2212 + .f (2.1) 
z, = Bcos(t -- Q) + FZZl + E2”22 + 1.. 

where A1 B, cp, ‘II, are slowly varying functions of t, while zrr, zzl,... are additive correct- 
ions. Substituting (2.1) into (1.5) we find 

(A” + 2bA$ - A$“)cos(~z - cp) + (A$’ - 2bA’ + 2A’cp’)sin(Br - cf) + 
+ E(z~~” + p”zii) + . ..= ~{'/2a~~AB~cos(f3~ - cp) + 

+ '/aufi@ + 2)AE32cos[(P + 2)~ - cp - 291 + (2.2) 

+*/a G@ - 2)AB2 cos{@ - 2)r - cp + 291) 

(B” + 2Bl@’ - B14’2) cos(z - 9) + (B$” - 28’ + 2B’$‘)sin(r - 4)) -1 E(zzin+z2r)+ . ..== 
zzz E ((‘/2bfj2A2B + li8B3)cos(z - 9) + ‘/zrB3cos(3T - 3’4’) - 

- ‘,‘sbfi2A”Bcos[(2P - I), - 2‘# + $1 - 
- ‘/dbft2A2Bcos [(2fi + 1)~ - 29 -- $I} 

Here the terms containing E to powers higher than the first have been discarded. If 
b + i, the solution is nonresonant and is obtained without any special difficulties_ For 

A and B we obtain constants defined by the initial conditions. Let us consider the res- 
onant solution when j3 z 1 and /3 = 1. 

We use the identities 

cos [(b - 2)t - v + 2$] = cos~cos(~t - rp) + sinhsin(pr - (p) (2.3) 
cos[(Zb - 1)z - 2q + $1 = coshcos(r - 6) - sinhsin(t - $) 

h = 2(fi -- 1)r - 2rp + 2$ (2.4) 

From (2.2) we find the systems 

A” + 2pAcp’ - Acpf2 = ~1/2afi~AB~ - &‘/4ap(2 - p)AB2 cos h 

A@’ - 2PA’ + 2A’$ =- .51/4 43(2 - b)AB%inh (2.5) 
B” + 2B9’ - 241’~ = E(V2bfi2A2B + ‘/sB3) - .G/~b~2A2BcoslL 

B$” - 28’ + 2B’$’ =’ t.V4bp2AZBsiuh 

zll” + p2zll = '/auP(fJ + 2)AB2cos[(fi + 2)~ - cp - 291 

z.~~” + z21 = -'/4 b f32A2B~~~[(2~ + 1)~ - 29 - $1 + ‘/z.4B3cos(3r - 39) (2.6) 
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Equations (2.5) are called variational, while (2.6) are called the equations for the per- 
turbations. Taking into account the slow variation of A, B, cp and $, from (2.6) we find 

i-+2 zii = - r/i6a/3 - ij + i ‘4B? cos [ (/3 + 2) T - ‘p - 2$] (2.7) 

z21 = l/16 & A”B cos [ (2fi + 1) z - 2q -- $1 - ‘/,&P C”S (3% -- 39) 

It is easily verified that any solution of the system 

dA/EdT = 1/,yzp(2 - f3)AB2sinh dq/edT = l/pafiB2 - ‘/*a@(2 - p)B2cosh 

dB/EdT = --‘/ebbA2Bsinh d$fcdT = ‘labpA + 11~6B2-‘/8bPA2cosh (2.8) 

satisfies system (2.5) to within terms of second order in e. From the first of the two equ- 
ations in (2.8) we obtain, after an elimination of T and an integration, 

Here X? is a constant of integration. From (2.8) (2.9) and (2.4) we obtain an auton- 
omous system for the two variables A* and h 

dA*/du = A* (1 - A*2) sin A, dh/du = - 2n + 4qA*? + 2 (1 - 2/I*“) cos h 

u = l/s /3bx%t, 
16 p-1 

2~=---- 4aB-1 I 4ap--1 

bfW E bP ’ 
4q =~~----- 

bP 
- 48 (2.10) 

From (2.10) we find 

[- 2nA* + 4qA*3 + 2A* (1 - 2A*2) ~0s h] dA* - A*” (1 - .4*L) siu hdh =,o (2.11) 

This equation has the general integral 

- n/i*2 + q/4*4 + .,I*" (1 - A*?) cos h = co 

Here CO is a constant of integration. 

(2.12) 

3. let us investigate the phase trajectories for autonomous system (2.10) in the 
( z y )-plane for which I = A*cosJv, y = A*siuh, i.e., A* and h are the natural 

polar coordinates. The phase trajectories are determined by expression (2.12) and all 
of them are symmetric relative to the axis Oz. In view of (2.9) all the real trajectories 

lie on the boundary or inside the circle A * = 1. 
In the first place we determine the singular points of system (2.10). From the condi- 

tions dA* / du = 0, dh.idu = 0 (3.1) 

we find the singular points 

a) hi = 0, “Ii* = ( 2 ;i-_“p, i” 

b) h> = S-XC, /lz* = i 
1 f ?S 

1 

‘11 
2 (1 + q) (3.2) 

CI co& = 2q - n, Aa* = 1 

As a matter of fact the point (c) is really two singular points on the boundary of a circle 
located symmetrically relative to the z -axis. The origin also is a singular point since 

dA* / du = 0 for A’+.= 0. These three types of singular points depend upon the para - 
meters q and n. They exist for certain values of parameters q and n ,while for other 
values they do not. This connection becomes particularly clear for the points (a) and 
(b) if we write the second of Eqs. (3.1) in the form 
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n = f (4, 
1 + 2 (q - 1) 59 (O<z<i) 

r@)=( -1+2(q+i)22 (-i<s<O) 
(3.3) 

and we solve it graphically. In view of dependency (2.9) we consider only the interval 
f-1, 11 for 5. We see that the parameter q has one boundary value q = 1 which de - 
marcafes two types of parabola z = f(z). Note, further, also the case q = 0 for which 
there is no term qA*’ in expression (2.12). 

Fig. 2. 

We consider the following cases: A. The value q = 0. B. The value of q is lower 

than the boundary value (q = 0.5). C, The boundary value q = 1. D. The value of q 

is higher than the boundary value ‘(q = 1.5) . The graphs of the function z = f(z) for the 

four cases is shown in Fig. 2. a, b, c, d, respectively. We have drawn the straight lines 
z = n parallel to the z -axis. The abscissas of the points of intersection of these straight 
lines with the curves z = J(z) yield the desired singular points. As the straight line I = 
= nmoves from -00 to + a,(i.e., for the interval - co < n < + CQ) it is very clear 
to see that when the singular points (a) and (b) exist and how they move along the z - 

axis. 
(a) AY 

Fig. 3. 

Let us consider the cases listed. 
A. q = 0. Here the singular points (a). (b) and (c) exist in the interval - 1 s IZ 5 1 

and they move to the left. The following subcases are distinguished as a function of n . 

A.l. n<- i. Only one singular point exists, namely the reference origin, which 
is a center. The phase trajectories for such a case (n = 1.5) are shown in Fig. 3. a. We 
see that the amplitude A* changes negligibly. 

A. 2. - 1 < n < 0. Here exist all singular points (a), (b), which are centers, and 
points (c), which are saddles. The reference origin is a somewhat unusual singular point 
whose index equals zero. It can be looked upon as the result of a coalescence of a 
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center and a saddle. The phase trajectories for such a case (n = -0.25) are shown in 
Fig. 3, b. We see that the amplitude A* has a significant variation for certain phase 
trajectories. 

A. 3. n - 0. This is a somewhat particular boundary case (Fig. 3, c). The phase 

trajectories are now further symmetric also relative to the y -axis. Conditions (3.1) 
are fulfilled for all points of the boundary circle, so that it can be treated as a singular 
line. 

For a subsequent variation of n (for positive values) the phase trajectory patterns con- 
sidered repeat, but in the reverse order with this difference that for some positive value 
of n the phase trajectories are the mirror images relative to the y -axis of the phase 

trajectories for that same negative value of n. For example, for n = 0.25 we have the 
phase trajectories of Fig. 3, b except that the z -axis must be turned to the left. 

Fig. 4. 

Fig. 5. 

B. q = (1.5. Here the singular point (a) exists in the interval - 1 < n < 2, the singu- 
lar point (b), in the interval 0 < n < 1, and singular points (c), in the interval 0 < n < 

< 2. Therefore, we distinguish the following subcases. 
B. 1. n < - I. This subcase is analogous to A. 1. No singularities appear. 
B. 2. - 1 < n < 0. Here two singular points exist, (b), a center, and the origin 

whose index equals zero. The phase trajectories for such a case (n = - 0.25) are shown 
in Fig.4, a. 

B. 3. 0 < n < 1. All singular points exist here. In this subcase we can pick out three 

different behavior portraits of the phase trajectories. 
B. 3.1. 0 < n < 0.5. The phase trajectory which passes through the reference origin 

is closed around the center (b). Such a case (n = 0,25) is shown in Fig. 4, b. 
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B. 3.2. n = 0.5. This is a boundary case (Fig. 4, c). The phase trajectory passing 

through the origin is represented by two straight lines. 
B. 3.3. 0.5 < n < 1. Here the phase trajectory which passes through the origin is closed 

around the center (a). Such a case (n = 0.65) is shown in Fig. 4, d. 

B. 4. 1 < n < 2. Here, as also in B. 2. there exist two singular points, (b) and the re- 
ference origin (O.O),only now the origin(O.0) is a center but point (b) is a singular point 
with an index equal to zero. We do not show the phase trajectories for this case, but 

they are analogous to C.4 (Fig. 5, c). 
B. 5. 2 < n. Once again, as in B. 1, we have only one singular point, namely the 

origin (O.O),which is a center. 
C . Q = 1 (boundary case). Here the singular point (a) does not exist. Point (b) exists 

in the interval -1 < n < 3 and the points (c), in the interval 1 < n < 3. Therefore, we 

distinguish five subcases. 
C. 1. n < - 1. This case is analogous to A. 1 and B. 1. 
C, 2. - 1 < n < 1. Here two singular points (b) exist, one is a center, the other is 

the reference origin which is a singular point with an index equal to zero. Depending 
on the form of the trajectory passing through the origin, we can delineate three patterns. 

C, 2.1. - 1 < n < 0. The phase trajectory passing through the origin and closing 

around center (b) has two tangents at the origin, which form an acute angle. 

C. 2.2. n = 0. The phase trajectory passing through the reference origin (Fig. 5, a) 
is tangent to the Y -axis. 

C. 2.3. 0 < n < 1. The phase trajectory passing through the origin is twice tangent 
to it, forming an obtuse angle. We do not show the phase trajectory patterns for cases 

C, 2.1 and C. 2.3, but they are analogous, respectively, to 8.2 (Fig.4, a) and D. 2.3 

(Fig. 6, a). 
C. 3. n = 1. This is a special boundary subcase. Here conditions (3.1) are fulfilled 

for all points of the 5 -axis in the interval 0 s z s 1 , so that this interval can be treat- 
ed as a singular line. The phase trajectories for such a subcase are shown on Fig. 5. b. 
We see that for certain trajectories the amplitude has a significant variation. 

C.4. 1 < n < 3. Here exist the singular points (b) and the reference origin which are 

centers and the points (c) which are saddles. The phase trajectories for such a case 
(rz = 1.125) are shown in Fig.5, c. 

C. 5. 3 < n. Here, as in B. 5, we have only one singular point (0.0). a center. 

Fig. 6. 

D. q = 1.5. Here (Fig.2, d) the singular point (a) exists in the interval 1 < n < 2, 
the point (b), in the interval -1 < n < 4, and the points (c), in the interval 2 < n < 4. 
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Such a case was qualitatively investigated in [S]; it should be noted that the Cases A, 
B, C considered here were not observed there. Therefore, we shall not dwell on this 

case in detail, We have: 

D.l. n < - i. This subcase is analogous to A. 1, B. 1, C, 1. 
D. 2.1. - 1 < n < 0. The pattern is analogous to C.2.1. 
D. 2.2. n = 0 . The pattern is analogous to C. 2.2. 
D-2.3. 0 < II < 1 .The pattern is analOgOuS (Fig.6. for n < 0,5) 

0.3. 1 ( n < 2. This subcase differs essentially from the ones considered above. Here 
the point (a) is a saddle. Through it passes a separatrix a part of which envelops the 
center (b) while the other part envelops the other center, namely the reference origin 

(Fig. 6. b). 
D.4. 2 < n < 4. Here exist the singular points (b) and the reference origin which are 

centers and the points (c) which are saddles. This subcase is analogous to C, 4. The phase 
trajectories for such a subcase are shown in Fig 6, c. 

D. 5. 4 < n. This subcase is analogous to B. 5 and C. 5. 
If instead of q = 1.5 we take some other value of q(q > 1) the qualitative results do 

not change. The phase trajectories have been considered for positive values of parameter 
q and for all values of parameter n. Negative values of parameter q were not consid- 
ered since if in (2.12) we simultaneously reverse the signs of q, n, ~0s h, CO this equality 

is not altered. This shows that the investigations carried out for positive values of 4 carry 
over also for negative values of q if only we turn the x -axis to the left and replace n 
by-n. From (2.10) it follows further that we need also to turn around all the, arrows on 
the phase trajectories. The phase trajectories allow us to analyze the system motion 

pattern. It is evident that motions with constant amplitude are possible; they correspond 

to points of the center type; and motions with periodic oscillations of amplitude are poss- 

ible, which correspond to closed phase trajectories. Separatrices and singular saddle points 

correspond to periodic variations of the amplitude. In subcases A.2 - A.4, B. 2 - B.4. 
C.2 - C.4, D. 2 - D.4, for certain of the phase trajectories we can observe a transfer 
of energy from the rotating disk to the compound pendulum, where the amplitude of the 
torsion oscillations A* decreases significantly while the amplitude of oscillations of me 

compound pendulum B increases significantly in view of dependency (2.9). Afterwards, 
A* increases and B decreases. The energy is transferred from the compound pendulum 

to the rotating disk. 

4. Let us further find the amplitude 4 * as a function of the variable u. From (2.12) 
and (2.10) we obtain 

t v(l - 012 8” - (cg + n0 - 4@)9 
=2&d (0 = A*2) (41.1) 

Consider the polynomial 
G(9) = (1 - 0)‘YP - (cO $- rd - q8’)’ (4.2) 

The roots of polynomial (4.2) coincide with the roots (for A*“) of Eq. (2.12) when 
cos h = k 1. For different values of n, q and % polynomial (4.2) has four real roots 
or two complex and two real roots, i.e., it can be written in the form 

G(6) = (1 - q2)(8 - O,)(e - f&)(0 - e,)(e - 0,) (04 < 0s < 0, < 0,) (4.3) 

or in the form 
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G(9) = (1 - q2)(8 - (!I,)(3 - e,)[(e - v)’ + 02] (0 < 02 < 01-c 1) (4.4) 

nq --I 
v = - - ii2 (el +e,) 

-- 
q2- 1 

0’ = -@$yj fj1e2 - V2 (0 > 0) 

Every phase trajectory intersects the X-axis in two points, the squares of whose polar 
radii are the roots Oi. The polynomial (4.2) is represented differently for the different 
cases (A,...,D). 

In Cases A and B polynomial G(0) has the form (4.3), but Od < 0,while 8i > 1, i.e. 
real points in the ( ZY )-plane do hot correspond to them. Then, using [8], for 8 in the 
interval 8, 5 0 5 O2 we obtain 

e = u3 (e2 - e,) - e4 (e2 - e3) sn2 u 
ea - e4 - (e2 - e,) sn2 u ( 

~= 2V~--fP 
1 (u - uo) ) (4.5) 

Here the modulus k of the Jacobi elliptic function sn and the quantity 1 are determined 
by the expressions 

k2 = 
03 - e4) tea - ea) 4 

(0 L - es) (e2 - e,) 9 z2 = (el - es) tea - e4) (1 > 9 (4.6) 

Here u. is the value of u when 0 = 03. 
The period of the long-period oscillations of the amplitude A* with respect to time 

‘F is determined by the formula 

81 
eT = p&2 Jfw K tk) (4.7) 

Here K(k) is the complete elliptic integral of the first kind in the Legendre form with 
modulus k. 

In Case C (excepting the subcase C, 3) the polynomial G(0) has the form 

G(e) = a(n - i)(e - e,)(e-e,) (e - e,) (4.8) 

Here for n > 1 (subcases C.4, C. 5) the root I& > 1, while for n < 1 (subcases C. 1, 

C.2) the root 0, < 0. Suppose n > 1, then using [8] we obtain for 8 in the interval 

e3 5 8 5 e, 

e=e3+(e,--tb)sn2ul 
( 

u1= 2 1/Z@--2) 
I 

(u-m) 
) 

(4.9) 

The modulus k of the Jacobi elliptic function sn and the quantity I are determined 
by the expressions 

e2 - e3 4 
k2 =-, 

e1 - e3 
1” = m 

3 
(I> 01 

Here u,, is the value of u when 0 = f3,.The period of the long+.riod oscillations of 
the amplitude A* with respect to time z is determined by the formula 

ET= p&a &_ 1) K(k) (4.12) 

The modulus k and the quantity I are given by expressions (4.10). 
Suppose n < 1. Using [8]. for 8 in the interval 8% 5 8 s e1 we obtain 

8 _ e2 (el- es) - es (el - 0%) sna U2 

e1 - e3 - (el - e2) sn2 u2 ( 

u2 = 2 v2 (1 - 4 (U - u3) 

1 
(4.12) 

where the modulus k is determined by the expression 
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k2 = (0, - e,)l (0, - 0,) (4.13) 

The quantity I is found from (4.10). The period of oscillations of the amplitude A* is 
determined bv the formula 

I 

ST = 
81 
-- 

pw 62 (1- n) K @) 
(4.14) 

In the boundary case n = 1 (subcase C. 3) the polynomial G(6) has the form 

G(B) = 2c0(e - e,)(e - e,) 

and from (4.1) we easily obtain for 6 in the interval 62 S 6 5 6, 

8 = e2 + (el - es) sin2 [ V/- (U - uo)l (4.252 

Here co < 0 always and uo is the value of u for 6 = 0,. 
InCaseDwehaveq>i, i- q2 < 0 and it is now possible to represent polynomial 

G(6) in form (4.3) and in form (4.4). If G(6) has form (4.3) the cases 

(&) e4<e3<o<b=vw~ 
(p) 0 < e4 < e3 < 1 < e2 < e1 
(r) 0 < e4 < es < th < ch < 1 

are possible. In case (v) for ap appropriate value of c0 there exist two phase traject- 
ories which intersect the x-axis at points with the polar radii Ai* = VW, i = 1,2,3,4. 

In the first two cases, for an appropriate value of c 0 there exists only one phase trajec- 
tory which intersects the x -axis at points with polar radii Ai* = J’-& (i = 1, 2 for case 

(a), and i = 3, 4 for case (B)). For 8 in the interval 6, g 6 6 6, we have 

e = 02 (el - es) - e3 (el - es) ~n2 u3 
e1 - es - (el - e2) sna u3 i > 

(4.16) 

The modulus k of the elliptic function sn and the quantity 1 are determined by the 
expressions 

(es - e4) (e, - el) 4 
ka 5: (es - el) (ea - e4) 3 l2 = (el - e3) (ea - e,) (I> 0)) (4.17) 

Here u0 is the value of u for 6 = 6,. For 6 in the interval e4 & 6 & f& we have 

e _ or a - es) + e1 (e3 - e4) sn2 us 
e1 - es + tea - e4) sn2 us (4.18) 

Here k and I are the same as in (4.16). but u0 is the value of u for 6 = e4. For both 
intervals the oscillation period of the amplitude A* is given by the expression 

8e 

ET = fib9 1/42,1 
K (4 (4.19) 

Suppose G(e) has form (4.4). This can be realized only for phase trajectories envelop- 
ing the center (b) in subcasd D. 3. Then we set [S] 

e1 - Y e2 - v 

tg p1= 0 t tgpa=,, I” = tg p2 - p1 pz+ Pl 
---tg 2 2 (4.20) 

For 6 in the interval fZ12 & 6 & 6r we have 

e= el+02 el-es p-cnu3 --- 
2 2 i-p.cnlJs 

(4.21) 

The modulus k of the Jacobi elliptic function cn and the quantity I are determined 
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by the formulas 

PI - Pa 
k2=sin2T, 

125 

(4.22) 

Here uo is the value of u from 9 = B,.The oscillation period of the amplitude has the 
form 

261 
aT = 8h2 1/92 K(k) (4.23) 

Here k and I have the values (4.22). 
After determining A*2 as a function of u we can also determine B2 as a function 

of u by using (2.9). It should be noted that the resonance solution obtained for system 
(1.5) is valid also for the nonresonant case /3 # 1. From (2.10) we see that then n ---) m 
while from the cases considered it ensues that the phase trajectories are concentric 
circles, i. e. , A and B are constants. 
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